Contribution of Groundwater to River Discharge in the Mampang Sub-watershed
Abstract
Water is a necessity of human life. In fulfilling this need, the use of groundwater is often used. Groundwater is a non-renewable resource. Jakarta is a city traversed by many rivers and has a morphological dependence on the upstream watershed (DAS) in the Jabodetabek Region. The research location is in the Mampang Sub-watershed, which is in the Jakarta and Depok areas. The Mampang sub-watershed is geographically located at 106°48'44" - 106°49'59" East Longitude and 6°15'4" - 6°22'17" South Latitude. The problem in the research of the Mampang Sub-watershed often experiences floods every year with a height of between 10 cm - 50 cm. The aim of the study was to determine the groundwater-surface water interaction during a flood event at the study site. The method used is by collecting primary data and secondary data, then simulating using SWAT (Soil and Water Assessment Tools) and SWAT-MODFLOW. The SWAT MODFLOW simulation results obtained 874 river grids with Groundwater Surface Water Exchange Rates (GWSER) values in February 2020 between 52 m3/day to 353 m3/day and in September 2019 between -74 m3/day to 26 m3/day. The contribution of groundwater can be analyzed by comparing the river discharge in a certain month with the GSWER value for that month. The contribution of groundwater to the monthly peak discharge of the river at the study site ranges from 0.24% to 5.27%, and the average contribution of groundwater is 2.48%.
References
Atkins, M. L., Santos, I. R., Ruiz-Halpern, S., & Maher, D. T. (2013). Carbon Dioxide Dynamics Driven by Groundwater Discharge in a Coastal Floodplain Creek. Journal of Hydrology, 493, 30-42.
Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing Regional‐Scale Spatio‐Temporal Patterns of Groundwater–Surface Water Interactions using a Coupled SWAT‐MODFLOW Model. Hydrological Processes, 30(23), 4420-4433.
Batlle‐Aguilar, J., Harrington, G. A., Leblanc, M., Welch, C., & Cook, P. G. (2014). Chemistry of Groundwater Discharge Inferred from Longitudinal River Sampling. Water Resources Research, 50(2), 1550-1568.
Bishop, J. M., Glenn, C. R., Amato, D. W., & Dulai, H. (2017). Effect of Land Use and Groundwater Flow Path on Submarine Groundwater Discharge Nutrient Flux. Journal of Hydrology: Regional Studies, 11, 194-218.
Cook, P. G. (2013). Estimating Groundwater Discharge to Rivers from River Chemistry Surveys. Hydrological Processes, 27(25), 3694-3707.
Guo, X., Xu, B., Burnett, W. C., Wei, Q., Nan, H., Zhao, S., ... & Yu, Z. (2020). Does Submarine Groundwater Discharge Contribute to Summer Hypoxia in the Changjiang (Yangtze) River Estuary?. Science of the Total Environment, 719, 137450.
Herlambang, A., & Indriatmoko, R. H. (2005). Pengelolaan Air Tanah dan Intrusi Air Laut. Jurnal Air Indonesia, 1(2).
Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world’s oceans but important for coastal ecosystems. Nature communications, 11(1), 1260.
Maathuis, H., Yong, R. N., Adi, S., & Prawiradisastra, S. (1996). Development of Groundwater Management Strategies in the Coastal Region of Jakarta, Indonesia. Final Report.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900.
Rengarajan, R., & Sarma, V. V. S. S. (2015). Submarine Groundwater Discharge and Nutrient Addition to the Coastal Zone of the Godavari estuary. Marine Chemistry, 172, 57-69.
Republik Indonesia. (2011). Keputusan Presiden Republik Indonesia Nomor 26 Tahun 2011 tentang Penetapan Cekungan Air Tanah. Sekretariat Negara. Jakarta
Sabar, A., & Plamonia, N. (2011). Iklim, Rezim Hidrologi dan Manajemen Air Berkelanjutan Ihwal Kawasan Terbangun di Zona Monson Indonesia. Semin. Sehari Hari Air Sedunia 2011 1–30.
Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., ... & Li, L. (2021). Submarine Groundwater Discharge Impacts on Coastal Nutrient Biogeochemistry. Nature Reviews Earth & Environment, 2(5), 307-323.
Santos, I. R., de Weys, J., Tait, D. R., & Eyre, B. D. (2013). The Contribution of Groundwater Discharge to Nutrient Exports from a Coastal Catchment: Post-Flood Seepage Increases Estuarine N/P ratios. Estuaries and coasts, 36, 56-73.
Soekardi. (1986). Peta Hidrogeologi Cekungan Airtanah Jakarta Skala 1:100.000. Direktorat Geologi Tata Lingkungan. Bandung.
Sun, X., Du, Y., Deng, Y., Fan, H., Tao, Y., & Ma, T. (2021). Contribution of Groundwater Discharge and Associated Contaminants Input to Dongting Lake, Central China, using Multiple Tracers (222 Rn, 18 O, Cl−). Environmental Geochemistry and Health, 43, 1239-1255.
Turkandi, T., Sidarto, D. A., & Purbohadi, W.M. M. (1992). Peta Geologi Lembar Jakarta dan Kepulauan Seribu. Skala 1:100.000. Pusat Penelitian dan Pengembangan Geologi. Bandung.
Wang, P., Huang, Q., Pozdniakov, S. P., Liu, S., Ma, N., Wang, T., ... & Liu, C. (2021). Potential Role of Permafrost Thaw on Increasing Siberian River Discharge. Environmental Research Letters, 16(3), 034046.
Winter, T.C., Harvey, J.W., Franke, O.L., & Alley, W.M. (1998): Groundwater and Surface Water: A Single Resource. USGS Circular 1139, Denver, Colorado.
Yosua, H., Soeryantono, H., & Marthanty, D. R. (2019, December). Jakarta Groundwater Basin Recharge-Discharge Boundary Area Map: A Preliminary Study. In IOP Conference Series: Materials Science and Engineering (Vol. 690, No. 1, p. 012008). IOP Publishing.
Zhou, Y., Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2019). Fresh Submarine Groundwater Discharge to the Near‐Global Coast. Geophysical Research Letters, 46(11), 5855-5863.
Copyright (c) 2023 International Journal of Science and Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.