Machine Learning Implementation for Profit Estimation
Abstract
The company must have a unique strategy to help grow its business. One of the ways to strengthen the company's business is by estimating the company's profit. This is because with an estimated profit, the company can manage the transactions made. Some companies still use a manual profit determination process that requires several steps. Processes that are carried out manually result in a long time, which can cause delays in completing tasks and results that are less accurate than desired. Multiple linear regression is an algorithm used to determine the relationship between the dependent variable and at least two independent variables. This algorithm is a type of supervised learning algorithm that develops estimation models based on input data. The use of this algorithm is included in part of machine learning. Implementation of machine learning to calculate company profit estimates using the Python programming language. From the estimation results using multiple linear regression and Python programming, the result is that multiple linear regression can be utilized or used to predict company profits. 98% of Profit is influenced by independent factors, namely R&D Spend and Marketing Spend, while the remaining 2% is influenced by variables that are not included in this calculation.
References
Adiguno, S., Syahra, Y., & Yetri, M. (2022). Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(4), 275-281.
Baruque, B., & Corchado, E. (2011). Fusion methods for unsupervised learning ensembles (Vol. 322). Berlin, Germany: Springer.
Chan, J. (2015). Learn Python in one Day and Learn it Well: Python for Beginners with Hands-On Project: The Only Book You Need to Start Coding in Python Immediately. CreateSpace Independent Publishing.
Tiwari, S., Dogan, O., Jabbar, M. A., Shandilya, S. K., Ortiz-Rodriguez, F., Bajpai, S., & Banerjee, S. (2022). Applications of Machine Learning Approaches to Combat COVID-19: A Survey. Lessons from COVID-19, 263-287.
Putri, E. R. S., Novianti, F., Yasmin, Y. R. A., & Novitasari, D. C. R. (2021). Prediksi Kasus Aktif Kumulatif covid-19 di Indonesia Menggunakan Model Regresi Linier Berganda. Transformasi: Jurnal Pendidikan Matematika dan Matematika, 5(2), 567-577.
Elisa, E. (2018). Prediksi Profit pada Perusahaan dengan Klasifikasi Algoritma C4. 5. Kumpulan Jurnal Ilmu Komputer (Klik), 5(02), 179-189.
Giyanda, G., & Saidah, S. (2021). Auto Machine Learning dengan Menggunakan H2O AutoML untuk Prediksi Harga Bitcoin. Jurnal Ilmiah KOMPUTASI, 20(2), 189-198.
Ginting, V. S., Kusrini, K., & Luthfi, E. T. (2020). Penerapan Algoritma C4. 5 dalam Memprediksi Keterlambatan Pembayaran Uang Sekolah Menggunakan Python. (JurTI) Jurnal Teknologi Informasi, 4(1), 1-6.
Habibi, R., & Suryansah, A. (2020). Aplikasi Prediksi Jumlah Kebutuhan Perusahaan (Vol. 1). Kreatif.
Kurniawan, D. (2022). Pengenalan Machine Learning dengan Python. Elex Media Komputindo.
Marwansyah, S., & Utami, A. N. (2017). Analisis Hasil Investasi, Pendapatan Premi, dan Beban Klaim terhadap Laba Perusahaan Perasuransian di Indonesia. Jurnal Akuntansi, Ekonomi dan Manajemen Bisnis, 5(2), 213-221.
Lee, W. M. (2019). Python machine learning. John Wiley & Sons.
Nafi’ah, H. (2021) AI Project Cycle, Medium.com. Available at: https://medium.com/@hannnfh/ai-project-cycle-ccd67c3dd21d.
Ningsih, S., & Dukalang, H. H. (2019). Application of Interval Successive Method in Multiple Linear Regression Analysis. Jambura Journal of Mathematics, 1(1), 43-53.
Puteri, K., & Silvanie, A. (2020). Machine Learning untuk Model Prediksi Harga Sembako dengan Metode Regresi Linear Berganda. Jurnal Nasional Informatika (JUNIF), 1(2), 82-94.
Russell, R. (2020). Machine Learning: Step-by-Step Guide to Implement Machine Learning Algorithms with Python. (Knxb).
Saiful, A. (2021). Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning dengan Algoritma Linear Regression. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(1), 41-50.
Copyright (c) 2023 International Journal of Science and Society
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.