THE Copper Catalyst in Sulfur Reduction Process with Visible Light
Abstract
Sulfur gas such as SOx is one of the harmful residual gases resulting from combustion in vehicle engines due to the high sulfur content in fuel oil, especially diesel. Conventional processes in sulfur reduction still use technology with high process operating conditions and are expensive, thus charging the selling price of low sulfur diesel oil. Light energy is a promising alternative in sulfur reduction process with low production cost. This research will examine the sulfur reduction process with red light assisted by tin catalyst. The results showed that tin catalyst increased the photon energy in red light with sulfur reduction up to 800 ppm in 10 hours. The removal of C-S and O-H groups indicates the formation reaction of DBTO2 after DBT can be cracked from diesel oil hydrocarbon.
References
Abdullah, G. H., & Xing, Y. (2018). Oxidation of Dibenzothiophene in Diesel with In Situ Produced Hydrogen Peroxide. Energy & Fuels,32(8), 8254–8258. https://doi.org/10.1021/acs.energyfuels.8b01630
Cerri, G., de Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical applications: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science,27 (3-4), 141-150. https://doi.org/10.1016/J.CLAY.2004.04.004
Dadashi-Silab, S., Lorandi, F., DiTucci, M. J., Sun, M., Szczepaniak, G., Liu, T., & Matyjaszewski, K. (2021). Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society,143 (25), 9630-9638. https://doi.org/10.1021/jacs.1c04428
Gondal, M. A., Siddiqui, M. N., & Al-Hooshani, K. (2013). Removal of sulfur compounds from diesel using ArF laser and oxygen. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering,48 (13), 1663-1669. https://doi.org/10.1080/10934529.2013.815488
Kumar Vimal Chandra; Nanoti, Shrikant Madhusudan, S. S. (2017). Extractive Desulfurization of Gas Oils: A Perspective Review for Use in Petroleum Refineries. Separation & Purification Reviews,46 (4), 319-347. https://doi.org/10.1080/15422119.2017.1288633
Lee Julia A., K. X. . V. (2019). Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. Reaction Chemistry & Engineering,4 (8), 1357-1386. https://doi.org/10.1039/c9re00036d
Li, X., Ai, S., Huang, Y., Huang, C., Yu, W., & Mao, Z. (2021). Fast and reversible adsorption for dibenzothiophene in fuel oils with metallic nano-copper supported on mesoporous silica. Environmental Science and Pollution Research,28 (3), 2741-2752. https://doi.org/10.1007/s11356-020-10715-1
Li, Y., Liu, H., Huang, Z., He, Y., Xu, B.-H., Wang, H., & Yu, Z. (2021). Visible-Light-Driven, Palladium-Catalyzed Heck Reaction of Internal Vinyl Bromides with Styrenes. The Journal of Organic Chemistry,86 (12), 8402-8413. https://doi.org/10.1021/acs.joc.1c00838
Liu, C., He, Q., Zhang, Z., Su, Y., Xu, R., & Hu, B. (2014). Efficient Extractive Desulfurization of Fuel Oils Using N -Pyrrolidone/Alkylphosphate-Based Ionic Liquids. Chinese Journal of Chemistry,32 (5), 410-416. https://doi.org/10.1002/cjoc.201400146
Liu, R., Zhang, J., Xu, Z., Zhao, D., & Sun, S. (2018). Visible light photocatalytic oxidative desulfurization using Ti-MCM-41-loaded iron phthalocyanine combined with ionic liquid extraction. Journal of Materials Science,53 (7), 4927-4938. https://doi.org/10.1007/s10853-017-1954-0
Marchese, A. D., Durant, A. G., Reid, C. M., Jans, C., Arora, R., & Lautens, M. (2022). Pd(0)/Blue Light Promoted Carboiodination Reaction - Evidence for Reversible C-I Bond Formation via a Radical Pathway. Journal of the American Chemical Society,144 (45), 20554-20560. https://doi.org/10.1021/jacs.2c09716
Piscopo, C. G., Granadeiro, C. M., Balula, S. S., & Bošković, D. (2020). Metal-Organic Framework-Based Catalysts for Oxidative Desulfurization. ChemCatChem,12 (19), 4721-4731. https://doi.org/10.1002/cctc.202000688
Qian, W. (2023). On the Physical Process and Essence of the Photoelectric Effect. Journal of Applied Mathematics and Physics,11 (06), 1580-1597. https://doi.org/10.4236/jamp.2023.116104
Rezvani, M. A., Shaterian, M., Akbarzadeh, F., & Khandan, S. (2018). Deep oxidative desulfurization of gasoline induced by PMoCu@MgCu2O4-PVA composite as a high-performance heterogeneous nanocatalyst. Chemical Engineering Journal,333 (NA), 537-544. https://doi.org/10.1016/j.cej.2017.09.184
Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C,2 (34), 6921. https://doi.org/10.1039/C4TC00988F
Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., & Wallington, T. J. (2018). Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: how low should we go? Npj Climate and Atmospheric Science,1 (1), 26. https://doi.org/10.1038/s41612-018-0037-5
Zhang Isabelle; Zhu, Mingming; Zhang, Zhezi; Gao, Jian; Zhang, Dongke, Q. J. (2022). Catalytic Hydrodesulfurization of a Spent Tire Pyrolysis Oil Distillate over a Ni-Mo Catalyst. Industrial & Engineering Chemistry Research,61 (4), 1624-1635. https://doi.org/10.1021/acs.iecr.1c03240
Zhou, X., Wang, T., Liu, H., Gao, X., Wang, C., & Wang, G. (2021). Desulfurization through Photocatalytic Oxidation: A Critical Review. ChemSusChem,14 (2), 492-511. https://doi.org/10.1002/cssc.202002144
Copyright (c) 2025 International Journal of Science and Society

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.