Optimization of Encapsulation of Moringa Oleifera Antioxidant Activity with Ionic Gelation Method Using Sodium Alginate and CaCl2

  • Floriana A. Pinto State University of Surabaya, Indonesia
  • Nita Kusumawati State University of Surabaya, Indonesia
Keywords: Moringa, Free Radicals, Antioxidants, Encapsulation

Abstract

The diversity of medicinal plant benefits in Timor Leste. One of them is the Moringa plant which has not been utilized properly such as roots, bark and leaves. Unhealthy living habits can trigger poor human health. Namely malnutrition and exposure to free radicals cause cell damage in the body and ultimately have a major impact on health. Antioxidants as the right effort to be able to ward off and capture free radicals and replace damaged body cells, help in the regeneration of new cells. Antioxidants can be obtained from leaves, bark and roots of Moringa which are rich in high nutrition, encapsulated with Sodium Alginate and CaCl2. The purpose of the study was to determine the physical and chemical characteristics of Moringa leaf, bark and root extracts. Benefits for innovating functional Moringa food products with the highest antioxidant content, namely Moringa leaves. Using the ionic gelation method with nano synthesis testing with variations of Sodium Alginate and CaCl2 with variations in the ratio between (3: 1, 4: 1, and 5: 1). Testing of physical and chemical characteristics of superior results at a ratio of 5: 1. The results of the antioxidant test showed that the best Moringa leaves had an IC50 value of <50 ppm, its effectiveness in inhibiting free radicals was higher than extracts from other parts of Moringa. After encapsulation, the leaf extract yield was 29.81262851 ppm, the bark 40.69652802 ppm, and the roots 43.56171361 ppm

References

Abdelmohsen, K., Kuwano, Y., Kim, H. H., & Gorospe, M. (2008). Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence.

Amyliana, N. A., & Agustini, R. (2021). Formulasi Dan Karakterisasi Nanoenkapsulasi Yeast Beras Hitam Dengan Metode Sonikasi Menggunakan Poloxamer. Unesa Journal of Chemistry, 10(2), 184-191.

Angelia, F., Louisa, M., & Menaldi, S. L. (2019). Teknologi Nano Di Bidang Dermatologi Kosmetik. Media Dermato Venereologica Indonesiana, 46(2).

Anggun, B. D., & Pambudi, D. B. (2020). Physical Stability Test of Moringa Leaf Extract Gel Preparation Formula (Moringa Oleifera Lamk.). Scientific Journal of Health.

Arabacı, T., İçen, M. S., Dirmenci, T., Göğer, F., & Baser, K. H. (2020). Evaluation of antioxidant activities, phenolic constituents and essential oil composition of Marrubium heterodon (Benth.) boiss. & Balansa from Turkey.

Asisi, N., Amaliyah, N. F., & Hasrawati, A. (2021). Antioxidant Activity of Moringa Leaf Extract (Moringa Oleifera L.) and Its Development into a Gel Dosage Form (Vol. 13, Issue 1).

Fitriani Nurul, Herman, & Rijai Laode. (2019). Antioxidants of Sumpit Leaf Extract (Brucea javanica (L). Merr) with DPPH Method. Journal of Science and Health, 2(1), 1–19.

Haidar, H., H., C., B., DS, E., & WN, C. (2017). The role of lecithin degradation on the pH dependent stability of halofantrine encapsulated fat nano-emulsion. International Journal of Pharmaceutics, 524-535.

Hatmayana, R., Noval, Ramadhani, R. A., & Auliyani, N. (2022). Characterization of Nanocapsules of Serunai Leaf Extract (Chromolaena odorata L.) With Chitosan-Alginate Variations Using the Emulsion-Diffusion Method. Surya Medika Journal (JSM), 8(3). 187-194.

Jonassen, H. (2014). Polysaccharide based nanoparticles for drug delivery applications

Kurang, R. Y. (2020). Antioxidant Activity of Ethyl Acetate Extract of Moringa Leaves (Moringa Oleifera L). Journal of Pharmaceutical Care Anwar Medika, 3(1), 13–21. https://doi.org/10.36932/jpcam.v3i1.53

Li, Y., Yang, T., & Zhang, L. (2019). Quantitative analysis of molecular interactions on a microfluidic platform: A review. Analytica Chimica Acta, 1077, 1-13.

Mohanraj, U., & Chen, Y. (2006). Nanoparticles, A Review. Journal of Pharmaceutics, 5, 561-573.

Ningsih, V. D., & Atiqah, S. N. (2020). Formulation and Test of Spf (Sun Protection Factor) Value of Moringa Leaf Extract (Moringa Oliefrea) in Nanoemulsion Sunscreen Preparation. Tinctura Pharmacy Journal.

Nurfitriyawatie, N., & Indrayati, A. (2023). Karateristik Enkapsulasi Liposom Ekstrak Superoksida Dismutase (SOD) Bacillus altitudinis. Jurnal Ilmiah Ibnu Sina, 8(1), 21-30.

Nurulita, NA, Sundhani, E., Amalia, I., Rahmawati, F., & Utami, NND (2019). Test of Antioxidant and Anti-Aging Activity of Body Butter with Active Ingredients of Moringa Leaf Extract. Indonesian Journal of Pharmaceutical Sciences, 17(1), 1–8.

Rakhmawati, Y., Triawanti Triawanti, & Ari Yunanto. (2016). Antioxidant Effects of Saluang Fish (Rasbora spp.) on Malondialdehyde (MDA) Levels in the Brain of Malnutritional White Rats (Rattus norvegicus). Periodical Journal of Medicine, 12(2).

Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A., & Versari, A. (2022). Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Wine Industry: A Review. Applied Sciences, 12(3), 1169.

Riastiwi, I., Damayanto, IPGP, Ridwan, Handayani, T., & Leksonowati, A. (2018). Moringa oleifera Distribution in Java and Lesser Sunda Islands Attributed with Annual Rainfall. Biosaintifika, 10(3), 613–621.

Rudiana, T., & Danang Indriatmoko, D. (2020). Antioxidant Activity of Combination of Ethanol Extract of Bay Leaves (Syzygium Polyanthum) and Moringa Leaves (Moringa Oleifera). Original Article Mff, 25(1), 20–22.

Sasidharan, S., Naik, S.N., & Banat, I.M. (2020). FTIR spectroscopic analysis of biomolecules in microbial-derived products. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118733.

Salimi, YK, Bialangi, N., & Saiman, S. (2017). Isolation and Identification of Secondary Metabolites Compounds of Methanol Extract of Moringa Leaves (Moringa oleifera Lamk.). Akademika: Scientific Journal of Publication Media of Science and Technology, 6(2), 132–143.

Shah, R., Eldridge, D., Palombo, E., & Harding. (2014). Optimization and Stability Assessment of Solid Lipid Nanoparticles using Particle Size and Zeta Potential. Journal of Physical Science, 25(1), 59-75.

Taurina, W., Sari, R., Hafinur, UC, Isnindar, SW (2017). Optimization of Stirring Speed and Duration on the Size of Chitosan Nanoparticles-70% Ethanol Extract of Siam Orange Peel (Citrus nobilis L. var Microcarpa). Traditional Medicine Journal, 22(1), 16-20

Vongsak, B., Sithisarn, P. and Gritsanapan, W., 2013. Bioactive contents and free radical scavenging activity of Moringa oleifera leaf extract under different storage conditions. Industrial Crops and Products, 49, 419-421.

Xu, J., Butler, I. S., & Gilson, D. F. R. (2021). FT-Raman and high-pressure infrared spectroscopic studies of diacetylene and related molecules. Vibrational Spectroscopy, 115, 103244.

Zhang, Y., Xu, M., & Li, P. (2023). Recent advances in FTIR spectroscopy for food analysis: A comprehensive review. Food Chemistry, 404, 134073.

Published
2024-11-05
How to Cite
Pinto, F. A., & Kusumawati, N. (2024). Optimization of Encapsulation of Moringa Oleifera Antioxidant Activity with Ionic Gelation Method Using Sodium Alginate and CaCl2. International Journal of Science and Society, 6(4), 85-94. Retrieved from http://ijsoc.goacademica.com/index.php/ijsoc/article/view/1304